Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies.
نویسندگان
چکیده
Mesothelioma is a malignancy of the mesothelium and current treatments are generally ineffective. One promising area of anticancer drug development is to explore tumor susceptibility to targeted therapy. To achieve efficient, targeted intracellular delivery of therapeutic agents to mesothelioma cells, we selected a naive human single-chain (scFv) phage antibody display library directly on the surface of live mesothelioma cells to identify internalizing antibodies that target mesothelioma-associated cell surface antigens. We have identified a panel of internalizing scFvs that bind to mesothelioma cell lines derived from both epithelioid (M28) and sarcomatous (VAMT-1) types of this disease. Most importantly, these antibodies stain mesothelioma cells in situ and therefore define a panel of clinically represented tumor antigens. We have further exploited the internalizing function of these scFvs to achieve targeted intracellular drug delivery to mesothelioma cells. We showed that scFv-targeted immunoliposomes were efficiently and specifically taken up by both epithelioid and sarcomatous mesothelioma cells, but not control cells, and immunoliposomes encapsulating the small-molecule drug topotecan caused targeted killing of both types of mesothelioma cells in vitro.
منابع مشابه
The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma.
Immunoliposomes (ILs) anchored with internalizing human antibodies capable of targeting all subtypes of mesothelioma can be useful for targeted imaging and therapy of this malignant disease. The objectives of this study were to evaluate both the in vitro and in vivo tumor targeted internalization of novel internalizing human single chain antibody (scFv) anchored ILs on both epithelioid (M28) an...
متن کاملProduction and Evaluation of Specific Single-Chain Antibodies against CTLA-4 for Cancer-Targeted Therapy
Background: Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) molecules are expressed on T-cells and inhibit their function by inhibiting activation of subsequent T-cell molecular pathways. Blocking of CTLA-4 inhibits the growth of malignant tumor cells. Anti-CTLA-4 monoclonal antibodies activate the immune system against cancer. Due to several advantages of single-chain antibodi...
متن کاملIdentification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma.
The prognosis for patients diagnosed with mesothelioma is generally poor, and currently available treatments are usually ineffective. Therapies that specifically target tumor cells hold much promise for the treatment of cancers that are resistant to current approaches. We have previously selected phage antibody display libraries on mesothelioma cell lines to identify a panel of internalizing hu...
متن کاملSelection and Evaluation of Specific Single Chain Antibodies against CD90, a Marker for Mesenchymal and Cancer Stem Cells
Background: CD90, a membrane-associated glycoprotein is a marker used to identify mesenchymal stem cells (MSCs). Recent studies have introduced CD90, which induces tumorigenic activity, as a cancer stem cell (CSC) marker in various malignancies. Blocking CD90 activity with anti-CD90 monoclonal antibodies enhanced anti-tumor effects. To date, highly specific antibody single-chain variable fragme...
متن کاملDopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin
Objective(s): Nanocarriers are drug delivery vehicles, which have attracted the attention of researchers in recent years, particularly in cancer treatment. The encapsulation of anticancer drugs using protein nanocages is considered to be an optimal approach to reducing drug side-effects and increasing the bioavailability of anticancer drugs. Epirubicin (EPR) is an active chemotherapeutic medica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2008